39 research outputs found

    Analog simulator of integro-differential equations with classical memristors

    Get PDF
    An analog computer makes use of continuously changeable quantities of a system, such as its electrical, mechanical, or hydraulic properties, to solve a given problem. While these devices are usually computationally more powerful than their digital counterparts, they suffer from analog noise which does not allow for error control. We will focus on analog computers based on active electrical networks comprised of resistors, capacitors, and operational amplifiers which are capable of simulating any linear ordinary differential equation. However, the class of nonlinear dynamics they can solve is limited. In this work, by adding memristors to the electrical network, we show that the analog computer can simulate a large variety of linear and nonlinear integro-differential equations by carefully choosing the conductance and the dynamics of the memristor state variable. To the best of our knowledge, this is the first time that circuits based on memristors are proposed for simulations. We study the performance of these analog computers by simulating integro-differential models related to fluid dynamics, nonlinear Volterra equations for population growth, and quantum models describing non-Markovian memory effects, among others. Finally, we perform stability tests by considering imperfect analog components, obtaining robust solutions with up to 13%13\% relative error for relevant timescales

    Embedded Quantum Correlations in thermalized quantum Rabi systems

    Full text link
    We study the quantum correlations embedded in open quantum Rabi systems. Specifically, we study how the quantum correlation depends on the coupling strength, number of qubits, and reservoir temperatures. We numerically calculate the quantum correlations of up to three qubits interacting with a single field mode. We find that the embedded quantum correlations exhibit a maximum for a given coupling strength, which depends inversely on the number of subsystems and the reservoir temperature. We explore how this feature affects the performance of a many-qubit Otto heat engine, finding numerical evidence of a direct correspondence between the minimum of the extractable work and the maximum of the embedded quantum correlations in the qubit-cavity bi-partition. Furthermore, as we increase the number of qubits, the maximum extractable work is reached at smaller values of the coupling strength. This work could help design more sophisticated quantum heat engines that rely on many-body systems with embedded correlations as working substances.Comment: 12 pages and 12 figure

    Tripartite entanglement in quantum memristors

    Full text link
    We study the entanglement and memristive properties of three coupled quantum memristors. We consider quantum memristors based on superconducting asymmetric SQUID architectures which are coupled via inductors. The three quantum memristors are arranged in two different geometries: linear and triangular coupling configurations. We obtain a variety of correlation measures, including bipartite entanglement and tripartite negativity. We find that, for identical quantum memristors, entanglement and memristivity follow the same behavior for the triangular case and the opposite one in the linear case. Finally, we study the multipartite correlations with the tripartite negativity and entanglement monogamy relations, showing that our system has genuine tripartite entanglement. Our results show that quantum correlations in multipartite memristive systems have a non-trivial role and can be used to design quantum memristor arrays for quantum neural networks and neuromorphic quantum computing architectures.Comment: 9 pages, 6 figure

    Microwave Quantum Memristors

    Full text link
    We propose a design of a superconducting quantum memristive device in the microwave regime, that is, a microwave quantum memristor. It comprises two linked resonators, where the primary one is coupled to a superconducting quantum interference device (SQUID), allowing the adjustment of the resonator properties with an external magnetic flux. The auxiliary resonator is operated through weak measurements, providing feedback to the primary resonator via the SQUID and establishing stable memristive behavior via the external magnetic flux. The device operates with a classical input signal in one cavity while reading the response in the other, serving as a fundamental building block for arrays of microwave quantum memristors. In this sense, we observe that a bipartite setup can retain its memristive behavior while gaining entanglement and quantum correlations. Our findings open the door to the experimental implementation of memristive superconducting quantum devices and arrays of microwave quantum memristors on the path to neuromorphic quantum computing.Comment: 9+6 pages, 10 figure

    One-Photon Solutions to the Multiqubit Multimode Quantum Rabi Model for Fast W -State Generation

    Get PDF
    General solutions to the quantum Rabi model involve subspaces with an unbounded number of photons. However, for the multiqubit multimode case, we find special solutions with at most one photon for an arbitrary number of qubits and photon modes. Such solutions exist for arbitrary single qubit-photon coupling strength with constant eigenenergy, while still being qubit-photon entangled states. Taking advantage of their peculiarities and the reach of the ultrastrong coupling regime, we propose an adiabatic scheme for the fast and deterministic generation of a two-qubit Bell state and arbitrary single-photon multimode W states with nonadiabatic error less than 1%. Finally, we propose a superconducting circuit design to catch and release the W states, and shows the experimental feasibility of the multimode multiqubit quantum Rabi model.PGC2018-095113-B-I00, PID2019-104002GB-C21 and PID2019-104002GB-C22 (MCIU/AEI/FEDER, UE

    One-photon Solutions to Multiqubit Multimode quantum Rabi model

    Get PDF
    General solutions to the quantum Rabi model involve subspaces with unbounded number of photons. However, for the multiqubit multimode case, we find special solutions with at most one photon for arbitrary number of qubits and photon modes. Unlike the Juddian solution, ours exists for arbitrary single qubit-photon coupling strength with constant eigenenergy. This corresponds to a horizontal line in the spectrum, while still being a qubit-photon entangled state. As a possible application, we propose an adiabatic scheme for the fast generation of arbitrary single-photon multimode W states with nonadiabatic error less than 1%. Finally, we propose a superconducting circuit design, showing the experimental feasibility of the multimode multiqubit Rabi model.Comment: 6 pages, 5 figures plus Supplemental Material
    corecore